第532章 任务大礼包和激光技术(2 / 2)

超短超强激光技术该物品是一份来自未来一百年后的超短超强激光技术,也称超级激光脉冲技术,是打破现有维度,观测更高维度运行规律的必要条件之一。(详情)

备注化学反应是由分子轨道中价电子的动态触发的,这些运动一般在‘亚飞秒’(001飞秒1飞秒)尺度上进行,无法实时观察,可当光谱学技术发展到亚阿秒甚至是仄秒阶段时,又会发生什么变化呢?答案,你心里已经有数了。

“激光脉冲技术?”江博眨了眨眼,然后笑了起来“可以可以,郑守义和李开山那边正好在研究这方面的技术,扔给他俩应该能加快不少进度,这技术不错!

不过,介绍上说激光脉冲技术,居然涉及到了高维度的运行规律,有那么叼吗?”

江博点入详情看了看。

几分钟后,江博退了出来。

详情中的资料很多,哪怕江博现在智力很高,思维活跃,浏览速度极快,可一时半会儿也看不完,他只看了摘要的部分。

而这份摘要,让江博有些大开了眼界的感觉。

里面提到,在时间分辨率为阿秒级(10的负18次方秒)的范围内,可以观察到电子在慢速化学反应过程中的运动。

值得一提的是,一般在原子分子运动中,科学家们能够在其基本时间范围内研究原子和分子的所有运动,因为分子旋转的范围是皮秒量级,它们的原子振动范围为飞秒量级,电子移动的范围则是阿秒量级。

比方说,氢原子基态电子的轨道半径是0053n,基态速度是玻尔第一速度,光速的1137,约为2200千米每秒。

通过最简单的公式计算,在不考虑量子力学的情况下,绕一圈是150阿秒,半圈大概是75阿秒,而外层二三轨道的时间则更长。

也就是说,当激光脉冲的跟踪脉宽,达到或者小于阿秒量级时,又当摄像机的分辨本领足够高并且拍摄频率足够快时,是有可能对电子绕核运动或跃迁时的情况进行拍摄的。

当然,也只是理论上的有可能,毕竟亚原子级别的研究,必然牵扯到了量子力学,一旦成功,量子力学或将会以新的方式被定义也说不定。

除此之外,这类超短尺度的激光脉冲,不仅适用于观察,也可以直接操纵化学反应。

这可不是说笑,而是实打实的有可能,譬如使用激光脉冲可以改变反应进程——甚至可以通过停止分子中某一位置的电荷转移来达到破坏化学键的目的。

不过,在当下的科学界中,这种化学反应中有针对性的干预措施是不可能的,因为目前的设备精度还达不到分子中电子运动的时间量级。

而一旦在这方面有所突破,那就不一定了。

……

本章完